
/ee -_7- ".............
NAS K-"T'M- 112996

Database Reorganizacion in Parallel Disk Arrays

with I/O Service Stealing

Peter Zabback" Ibrahim Onvuksel t Peter Scheuermann ++ Gerhard \Veikunl '_

Abstract /_ ,t 7 £ c_F-

We present a model for data reorganization in parallel disk systems that is geared towards load t)ahmcing

m an environment with periodic access patterns. Data reorganization is performed by disk cooling, i e.,

migrating files or extents from the hottest disks to tim coldest <mes. \Ve develop an approximate queueing

model for determining the effective arrival rates of cooling requests and discuss its use in assessing the costs

versus benefits of cooling actions.

Index Terms:

database reorganization, load balancing, temporal access patterns, parallel disk systems, approximate queue-

ing model. I/O service stealing

1 Introduction

Database reorganizatioi1 plays an iniportant role in the perfornlance tuning of dynamic systems with evolvm A

access patterns. In this environment it is highly desirable to invoke an on-line database reorganization

scheme in which the reorganization actions are performed concurrently with regular transactions [2, 31.

Thus. in contrast to off-line reorganization, which is performed while disallowing regular transactions, on-

line reorganization is usually performed incrementally as a lower priority transaction [7]. In a centralized

database system reorganization is performed in order to reduce the access time [2, 31 . In contrast, the main

objective of data reorganization in parallel database systems is load balancing.

We present a new model for database reorganization in parallel database systems which allows the system

to determine at a given point in time whether a reorganization action is cost beneficial or not. given that

the reorganization itself imposes an additional load on the system Reorganization is performed dynamically

"Tandem Computers Incorporated, 10t00 North Tantau Avenue, Cupertino CA 95014-2542, USA. e-mad:

zabback _patch.t andem.com

* Northern Illinois University, Department of Computer Science. DeKalb, IL 50115, USA. e-mail: onyuksel@cs.mu.edu

;Northwestern University, Department of Electrical Engineering and Computer Science, Evanston, [L 60208, USA. e-mail:

peters _ece.nwu.edu

University of the Saarland, Department of Computer Science. P.O. Box 1,51150, D-6604[Saarbruecken, Germany. e-mail:
weikum _cs.uni-sb,de

7/- 71 / "

by_'mplovinganincrementaldatamigrationprocedurecalled disk coolinr_. Disk c<;oJin_ migrates data h,mi

"'trot" ('i.e.. heavily utilized) disks to 'cold" ii.e., lightly milized) _lisks.

()ur model {lifters m a number of aspects from other studies proposed in literature for determining optmial

reorganization points m centralized database systems[6.87..-Mthough the cost of performing a reorganization

was considered, reorganizations were viewed as occurring mstantlv, thus having no effect on the overall system

load. In addition, these assumed that the cost of performing a regu[ar transaction always increases m time

if the database is not in a reorganized state.

Our reorganization model is geared towards a workload in which a substantial proportion of the trans-

actions exhibit a periodic pattern of access characteristics. [n such a case. it may be beneficial to postpone

a reorganization for a later point in time when there are fewer regular transactions, In our system a data

migration request consists of two phases, a read phase, where the hottest disk is accessed, and a write pha_e.

where the coolest disk is accessed. However. the read phase of a migration action, and hence the entire

cooling action, is not executed if the service queue of the s_mrce _tisk is not empty. Since the source clisk

carries the heaviest share of the load, scheduling a reorganization action would most likely increase the

loadimbalance if the queue at the source disk is not empty. The model proposed here is a generalization of

the earlier models introduced in [4, 5]. The model used m £51 did not consider periodic access patterns. In

contrast, in [4] we considered explicitly periodical access patterns, but all reorganization actions were treated

as lower priority requests.

We shall refer to the read requests of the reorganization actions under a no-enqueueing policy as I/O

service stealing requests, given their analogy to cycle stealing operations in the CPU execution. As part of

our reorganization scheme, we have developed an approximate queueing model for a system with two types

of requests, namely regular requests and I/O service stealing requests. Using this model, we {-an determine

the intervals m time when the read and write phases of the reorganization actions will be scheduled, given

the moment in time that the load balance is observed.

2 Data Redistribution in Parallel Disk Systems

We tlave implemented an intelligent file manager, calh,_l FIVE. for parallel disk systems that can perfl>rm

striping on a file-specific or global basis as desired by the application, and in addition achieves load balancing

by judicious file allocation and redistribution of data [4, 5!. [n o,der to perform load balancing, our file system

keeps track of the following related statistics [5]:

• the heat of files (or extents, i,e., smallest units of data migration) and disks, where the heat is de-

termined as the number of block accesses to a file or disk per time unit, as measured by statistical

observation over a moving window of a certain length.

• the temperature of files (extents), which is defined as the ratio between heat and size.

Anr×rentisa filefra._nmntwhichconsistsofaI1the_rtipin_,mits,_fatib that arealh_catodt,__i_'-amy

diskm a single allocation unit [7!. 3,'ote that the heat lnt,tric c_.t)tlli_,s the mm_bm of block ,wc,,>,t-, ,hi, _ i,,

regular r_quests. ;tlld thus we obtain the [iJlt)win_ t_qati{)llShtp]_,,tw_'en the heat {_f a ,[i_k p. H. md tt,,

mean arrival rate of regular requests. A,.:

Ht

A,. = ---_ ,I)
R

where H is the average request size measured in terms _Jf tile nunlber of blocks accessed.

The above formula assumes that the access patterns of files, hence disks, are fixed m time. In pImtice.

we encounter tllally environments which exhibit perio_lkal, predictable access patterns. [n our Inodel for

database reorganization these periodic patterns Call be incorporated }P, identif>'ing a nunlber of intervals

such that the heat of a file stays constant actress an interval, but i> allowed to vary across them. As in i(

we define the weighted heat of file k as:

where

WFH_ = E H_'/ x It: -t___l 121
/=[

_ is the numbers of intervals

tj - tj-L is the length of interval j

HI; is the heat of file k in interval j

Correspondingly, the weighted heat of disk i is defined as:

n

[VDH, = E H,._ x (tj - tj_ t I;_)
]= [

where H,,a is the heat of disk i in interval j. H,4 is computed its the accumulated heat in interval] of all

files that reside on disk i. Note that arrival rate l_ is also a function of tile interval in time: we assume that

R, the average request size. is constant across all intervals, but as the heat of the disk changes, we obtain

now Ar m : _ for rn = [.... ;z.
' /{ ' •

2.1 Temporal Disk Cooling Algorithm

In order to perform dynamic heat redistribution we employ in our system a dynamic load balancing proc(,(h,,

called disk coolmq. Basically, disk cooling is a greedy procedure which tries to determine the best candi{htt,,.

i.e.. tile (or extent) to remove from the most utilized disk, i.e.. the disk with the highest weighted heat. in)r,I,',

to minimize the amount of data being moved while obtaining the maximum gain. The (weighted) temperatur,'

metric is used as the criterion for selecting the files (extents) to be reallocated because temperature reflect s the,

beneiit/cost ratio of the reallocation. The file to be moved is reallocated to tile disk with the lowest weizhte_t

VVVVTVTTI

"i,,,,, ,l
L f

rl_n_

coolin_ cO, dLn_ coohng

alternptcd attempted _;tarted

cOOJlrl_

ximshtd

heal cur_¢

v_LlhOUl _oohl_ ICtl"Llpt}rary

heal

1¢;1 cllrv¢ i11_.'r_15¢2
.j_ perrnanCnl

heal

decrease

Figure 1: Impact of cooling on "hot" disk

heat. In the case of an extent, in order to facilitate intra-request parallelism, an additional constraint is

observed, namely that the target disk should not already hold an extent of the corresponding file.

[n our svstem the disk cooling procedure is implemented as a background daemon which is invoked at

fixed intervals of time. The procedure checks first if a given trigger condition is satisfied or not [5]. If the

trigger condition is false, the svstem is considered loaci balanced and no cooling action is performed.

A cooling action will be executed only if our estimate of its benefit exceeds its additional cost, with both

measures taking into account this temporal access pattern. In order to estimate the cost/benefit of a cooling

action we make use of the weighted disk heat variance (WDHV) its an explicit objective function [4]. WDHV

is defined as follows:

±°WDHV(H) = Z (lZIa - H,4) '- x (t_- tj-L)
3=l z=|

(4)

where

D

/:/j

is the number of disks in the parallel system

is the mean disk heat (over all disks) in interval J

The benefit of the cooling action is measured by examining the load baLance of the system before and

after the potential reorganization. This benefit, denoted by t3. is computed as the difference WDHIT,,,.,. -

WDHt'I,,t,,,._, where WDHV_,,.,. is the weighted disk heat variance before the potential cooling process

and WDHI:/,,t,,_ is the weighted disk heat variance that potentially would result if the extent were to be

moved to the target disk. In order for the cooling to be scheduled, its benefit B must exceed the extra

cost. denoted by E. introduced by the reorganization process itself. The cooling process is executed in two

top.. the first (_nresponding tottm read phas_ _" t}w ;wri_m. w}wre the hot clb.k i_, ac(,'_,_,'d. ,m,l t}w ,,r,t,

phase of the action, during, which the cold target _[b,k i_ acces>e_t. T}w t,';ullam[_vt'it_'_ t)ha_e> mtr,_cilw_, ,,_l

additional amount of heat on the .-.ourcl _ and target disk_ whi('h c;m h_, _ ompute_[by ,[ividin_. the size ,_f rh,.

file Iextent)to be moved by tile corresponding ,turation of the phase. The read phases cc_rrespond to I/()

stealing requests and. as discussed in Section 3. the response time elan I/O stea[ing; request is equal to its

_mx'ice time. denoted by 1/ps. Thus rite duration of a read phase is ,_stimated as I/lz_. Figure 1 dlustraws

the t_,mporat heat changes on the source disk with and without cooling. The permanent heat reduction

clue to the read phase is already accounted for m the benefit B Otl. the other hatvJ, to detertnine the extra

cost (temporary heat increase in Figure l) we also need to determine the interval in time when the cooling

start_'d.

2.2 Estimating the intervals of the cooling action

Assu,nina that the cooling daemon is invoked at time now an iterative pr()cedure is invoked in order to

determine the intervals it: time. denoted bv m and n. when the tead and write phases will he (tCtlNtllv

scheduled and _,xecdted at; the corresponding service queues. Let Its assume t[lat the cooling daemon is

invoked during time interval j. i.e. t2 - 1 < now <_ t2. Using the mean arrival rate of regular requests

during interval j. A,.a, and the arrival rate of the disk cooling requests. A,. the approximate queueing model

developed in Section 3 is used first to determine A,.II, the effective arrival rate of the read actions of the

corresponding cooling requests. We assume, for simplicit3", that the trigger condition is always satisfied, i._'.

some heat imbalance is always present. Thus, the mean arrival rate of disk cooling requests in our system.

which correspond to the service stealing requests in the queueing model, is fixed and cart be calculated a,s:

I
A _ = !.5)

time between successive daelnoll invocations

The interval rn where the read part of the the tooting request would be scheduled is determined as by

the following iterative procedure. Notice that this procedure may require to recompute the value of A_y/.

compute A_I! using equation (9):

while (interval = NOT_FOUND) do

• Case 1: (tj_ 1 < (now + l/Aef]) <_ tj)

rn :: j: interval := FOU.VD:

• Case 2: ((tj <_ (now + l/Aeff) <_ tj+t

m := j + 1: interval := FOU.VD:

and (._ 2-t <_ "_o)):

• Else:

endwhile

Reiterate pr()ce(lure t,> compute A_// using ,\rj_L and A,

Recompute r_ou' := ncm' + <i * ,_), where i = min{,_ "_ r_<m' _- Ib * ,,\,) > t_ }:

Tile computation of tile interval n. where the write phase of the cooling request would be scheduled, is

substantially simpler. Since the target disk is cool we can schedule the corresponding reorganization request

as soon aspossible. Thus. if the reading phase was executed m interval m. the write phase will be scheduled

in the same interval ,n or in interval m -- 1 [9].

Having determined the intervals m and n, we can compute E. the extra cost due to tooting, as follows.

\Ve add two 'dummy" intervals to the load balancing cycle to account for the read and write ptzases of the

cooling action. During such a dummy interval the [teat of each disk. except for the disk which is dm subject

,_f the read or write, correspondingly, is taken to be the same as the heat of the disk during the time interval

when the corresponding read or write phase started. Thus. the terms m E' can be computed as follows:

D __,)2 D iiE E (H,,, - , + E (-&, " -'= - H,.,_) * _crite_duration
_=1 l:I

where

, f Hi.m + extent_size/read_duration, if i = .s

g"m : _[Hr.m, otherwise

H,.,, + eztent_.size/write_duration.H[in = Hi,,,, otherwise

.More details of our temporal disk cooling procedure are given in [9].

if i=t

3 An Approximate Queueing Model for I/O Service Stealing

I/O service stealing requests are issued periodically bv the reorganization process whenever a load imbalance

is observed, and thev correspond to the read phases of the cooling actions. In this section we present an

approximate queueing model for deriving the overall utilization and effective arrival rate. A_I/, of I/O service

stealing requests in a two class system consisting of regular and reorganization requests. The behavior of

the two classes of requests is characterized as follows:

1. regular requests: these requests have a mean arrival rate k_. The interarrival time of these requests is

assumed to be exponentially distributed. The mean service rate of these requests is given by ,u_.

2. I/O service .stealing requests: these lower priority requests are issued periodically by an incremental

reorganization process. We assume a constant interrarrival time I/A, and a mean service rate p_ for

these requests.

For I/O service stealing requests two additional restrictions apply':

[If art I/O service sroalin_ request arrives and rhr ,_,rxb _' ([Itell_' i> ll,_t rml)tV. _he t,'(lllp.st is ([bq_'_.I([_'([

bv the scheduler of the queue.

'2. l/O service stealing requests are synchronous, i.e.. a new I/O service stealing request is not ,,nqurued

until the execution of the previous one is finished. Thus. at any point m time there is at most one I/O

service stealing request m the system.

From the discussion above it is clear that the response time of an I/O service stealing request is equal to

its _ervice time. i.e.. 1/#_. \Ve proceed now to derive the formulae for the effective arrival rate of I/O _ervice

stealing requests. A,f:. as seen by the service center, and the overal[system utilization, p.

The probability that an I/O service stealing request finds the service queue etnpty is giwm by [- p.

Thus. we obtain:

A,f/ = {1 -p) × _\,. ,6)

This is m effect a recursive formula since p depends (m ,\,ff. [I10l'(ter tO chromate the inherent recursion

in fozmula (6). we adopt an approximation now and rr_,at rim system as a regular *I/G/1 queue with two

classes of prioritized requests [1) ' regular requests have high priority, while the service stealing requests have

low priority. Thus, we assume that the mterarrival times for both regular requests and [/O service stealing

requests are exponentially distributed. Note that m our actual system implementation the stealing requests

have constant interrarrival times (see equation .5).

The utilization p, due to requests with priority i in an).I/G/I queue with i priority classes is given by:

p, = ,\,/u,, (7)

Furthermore. under the exponential interarrival times assumption, the overall utilization p of tile system can

be expressed as the sum:

,\ r ,_ ,, f f
p = p_ + p,_ = -- +-- I81

Note that p depends only on the mean arrival and service rates of the two classes of requests, and is

independent of the service time distributions. From equation 18) we obtain:

= - -- x I_,. 19)
Aelf P Iz,.

Finally, substitution of equation (9) into equation (6) yields:

(tO)p=

[n [9] we report on an experimental validation of this model a[ld show that the maximum error of ,\,ff

ranges from 1% to .5% depending upon the arrival rates ,\,. and As of regular and I/O stealing requests.

Acknowledgment

Peter Scheuermann has been supported in part by NSF under grant IRI-9303.583 and by NASA-Ames tinder

grant NAG2-846.

References

"1! L. Kleinrock. (_ueuemq Sfls'terns ,,l_hn \Viler &" S_Jtts. I976,

,")] E. Omiecinski. L. Lee and P. Scheuetmann, "Porformance Amtlrsis cJr a ('¢mcurt¢'nt File Reorganizati¢_n

Algorithm for Record Clustering." [EEE Trar_saet_o¢z oI¢ KruJlcledqe cmd Data En, gi'r_eermq, \'¢flunw t_,

No.2. April 1994. pp. 265-3.57.

13] B. Salzberg and A. Dimock, "'Principles of Transaction-based On-line Reorganization," Proceedmq.s of

the 18th Internatwnal Conference on, Vertl Lar'qe Database,_'. 1992. pp..511-520.

4] P. Scheuermann. G. Weikum and P. Zabback, 'Adapriw, Load Balancing in Disk Arrays." Proceedinq,s

of the 4th lnternatwnal Conference on FotHMatu_ns of Data Organization and ,4lgor*thms (FODO. 1993.

pp. 345-360,

15i P. Scheuermann. G. Weikum and P. Zabback. "Disk Cooling m Pal alle[Disk Systems." [EEE Data

Engmeer'mg t?_dletm \'o1.17 No.3. Sept. 1994. pp. 29-40.

i6] B. Shneiderman. 'Optimum Data Base Reorganization Points," Commumcat_ons o/ACM, Volume 16.

No. 6, June I973, pp. 362-365.

[7] G. Weikum, P. Zabback and P. Scheuermann, "Dvnanfic File Allocation in Disk Arrays." Proceedmqs

of ACM SIGMOD International Conference on Management of Data. 1991. pp. 406-415.

[8] S.B. Yao, K.S. Das and T. Teorey, "A Dynamic Database IReorganization Algorithm." ACM Transac-

twns of Database Sqstems, Vol. 1, No. '2, June 1976. pp. 1.59-174.

i9} P.Zabback. [. Onyuksel, P.Scheuermann and G. Weikum, 'Temporal Database Reorganization with

[/O Service Stealing," Technical Report. Northwestern University, Dept, of Electrical and Comput_,t

Engineering, 1996.

